

Abstract **3635 / 13** AACR Annual Meeting 2018

CTC AND **CTDNA PROFILING TO DETECT 6 NCCN-GUIDELINE RECOMMENDED CLASSES OF ALTERATIONS FOR** IMMUNOTHERAPY AND TARGETED THERAPY SELECTION USING SAMPLE FROM A SINGLE BLOOD DRAW

Huang-Pin B. Hsieh¹, Jen-Chia Wu¹, Feng-Ming Lin¹, Julian Lucas¹, Alex Atkins¹, Pratyush Gupta¹, Hung-Jen Shao¹, Yen-Lin Chen², Wen-Jie Huang³, Chia-Hsun Hsieh⁴, Ruey-Kuen Hsieh⁵, Kuo-Wei Chen⁶, Ming-Hong Yen⁷, Mana Javey¹, Shih-En Chang¹, Twinkal Marfatia¹, Drew Watson⁸, Mahul Amin⁹, Ashish Nimgaonkar¹⁰, Oscar Segurado¹¹, Rui Mei^{1*}

¹CellMax Life, Sunnyvale, CA; ²Cardinal Tien Hosp., New Taipei, Taiwan; ³Mackay Mem. Hosp., Taipei, CA; ⁴Chang Gung Mem. Hosp., Taipei, Taiwan; ³Mackay Mem. Hosp., Taipei, CA; ⁴Chang Gung Mem. Hosp., Taipei, CA Gen. Hosp., Taipei, Taiwan; ⁸Kit Bio Inc, Los Altos, CA; ⁹Univ. of Tennessee Hlth.Sci. Ctr., Memphis, TN; ¹⁰Johns Hosp., Baltimore, MD; ¹¹MedicAffairs Consulting, San Jose, CA; * Corresponding author: rui@cellmaxlife.com

BACKGROUND AND PURPOSE

The availability of targeted and immunotherapies has provided NSCLC patients with more effective treatment options. However, this has resulted in an increase in the number and modality of tests required for treatment selection. Given **30-50%** of advanced lung cancer patients have insufficient or unavailable tissue for comprehensive genomic profiling, there is a need for a non-invasive assay that can accurately detect all guideline-recommended markers for NSCLC treatment selection. To meet this need, we have developed a blood test that detects six classes of alterations (SNV, indels, fusions, CNA, microsatellite instability and CTC PD-L1 expression) for therapy selection.

METHODS AND STUDY DESIGN

The CellMax circulating tumor cells (CTCs) PD-L1 assays are performed on the CMx[™] microfluidic platform.

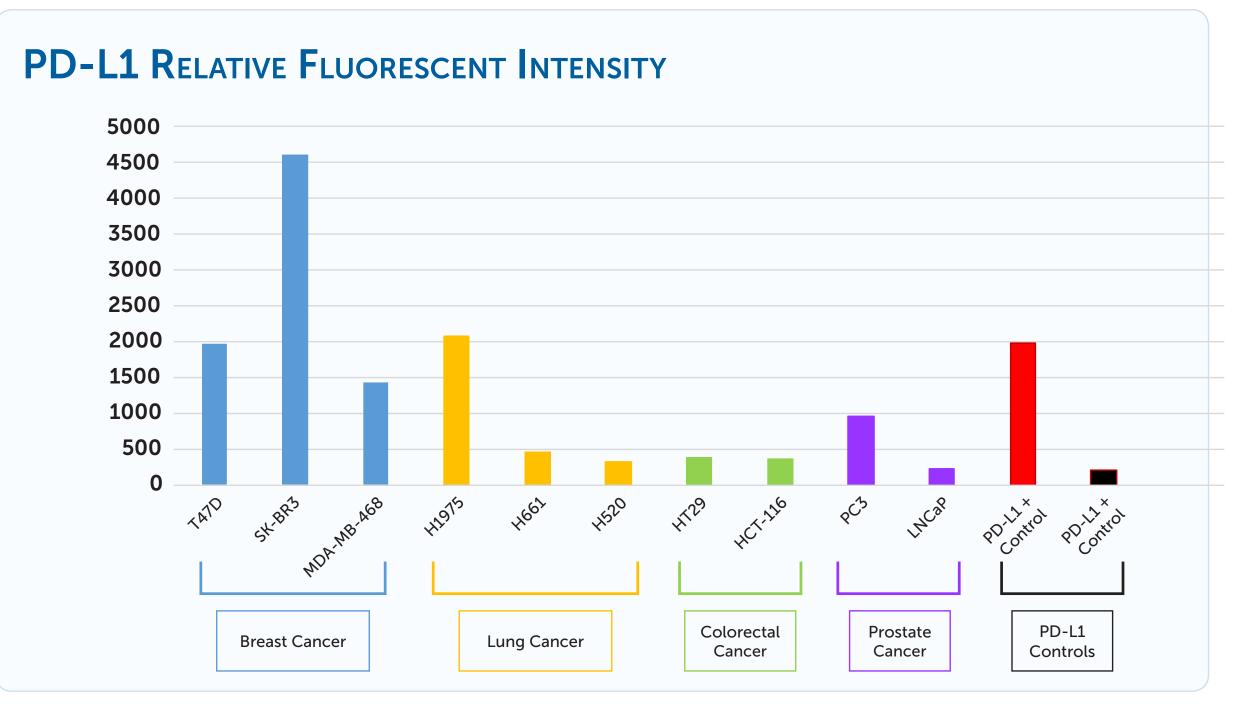
Brief description of the workflow [Fig.1]

1. 2mL peripheral blood per patient were run through a microfluidic chip and CTCs were captured with a proprietary EpCAM antibody implanted on an anti-fouling lipid bilayer coating which promotes capture sensitivity and specificity. Gentle purification is accomplished by a PBS wash in chip

2. Captured cells were released from the chip by a sweep of property-matched air foams that dislocated the lipid bilayer from the chip surface, avoiding harsh breaking of cell-antibody bonding

3. Released cells were stained with antibodies against CK18, CD45, PD-L1 and DAPI for CTC enumeration and PD-L1 analysis

4. PD-L1 protein analysis performed by quantifying fluorescent intensity of PD-L1 antibody (BioINK)

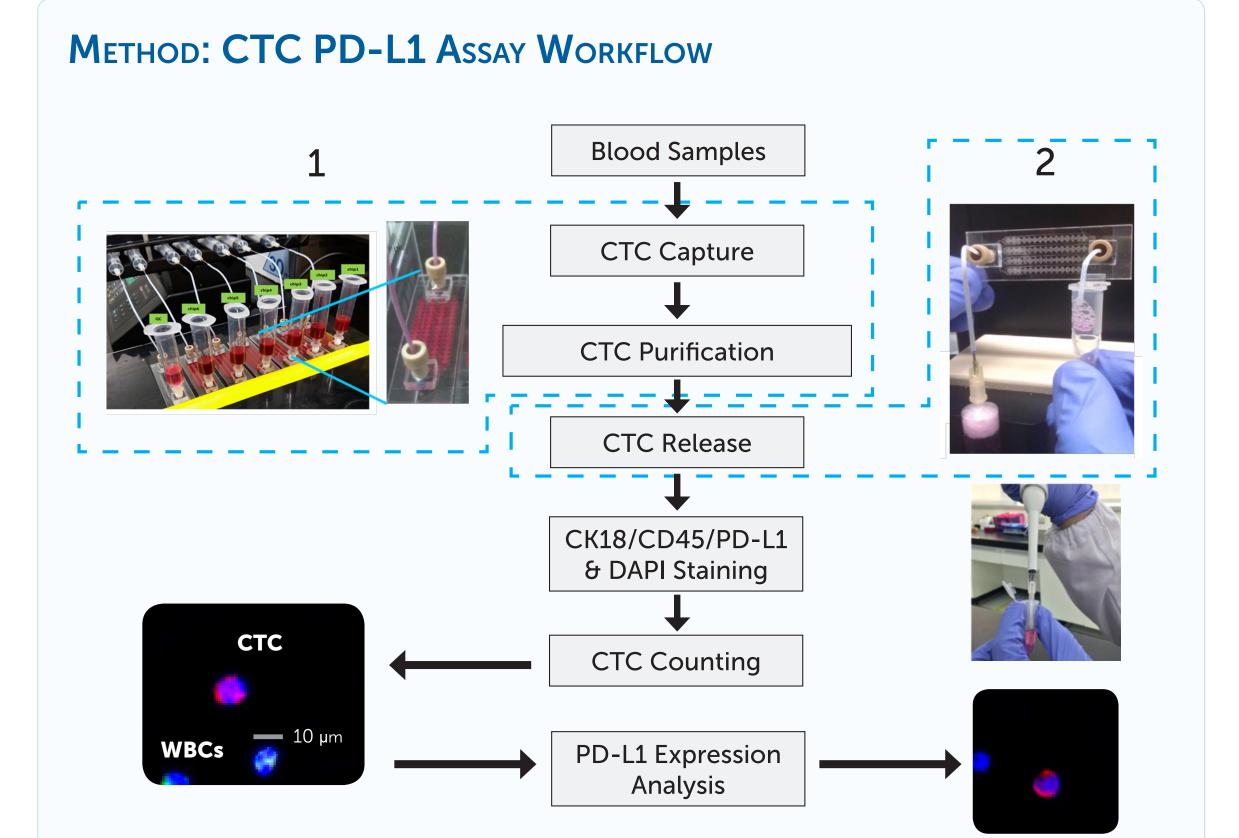

Criteria for positive PD-L1 expression on a CTC are as follows [Fig.2]

1. Cell-size ≥9µm with good morphology	2. CK18 intensity: >cutoff	3. CD45 intensity
		6. PD-L1 staining partial linear plas

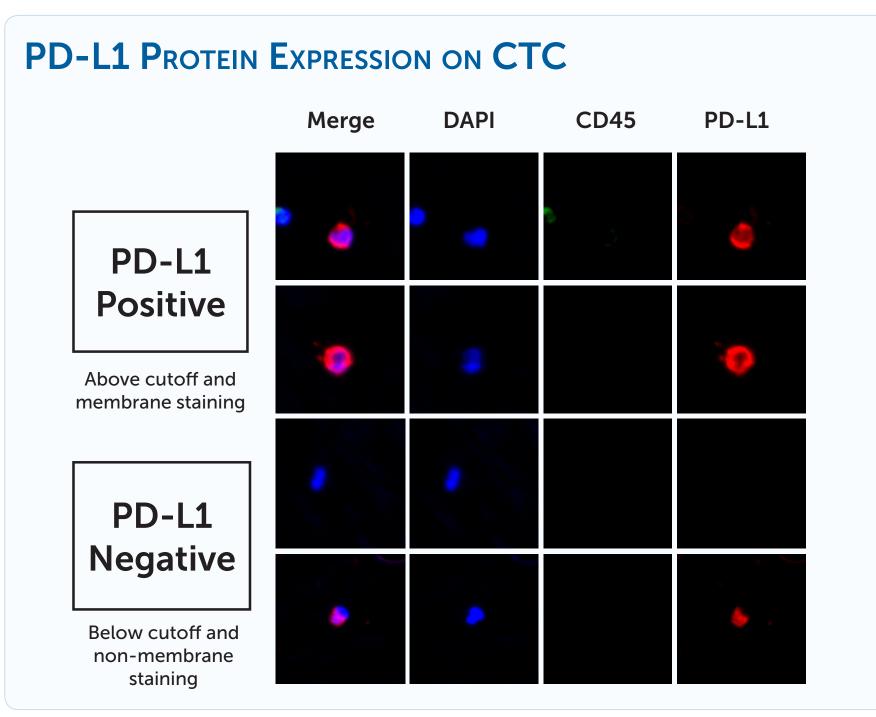
For the detection of 5 genomic variant classes (SNVs, indels, fusions, CNVs, MSI), the SMSEQ[™] liquid biopsy platform was used. It was validated in accordance with the latest ACMG/AMP guidelines to accurately identify a wide range of clinically relevant variant types from cfDNA². Please refer to AACR 2018 abstract 3652 "Analytical validation of a novel circulating tumor DNA detection platform for targeted and immunotherapy selection" for more information. RESULTS

PD-L1 Expression in Cancer and Control Cell Lines

To establish the CTC PD-L1 assay, 10 cancer cell lines (3 breast, 3 lung cancer, 2 colorectal, 2 prostate) as well as PD-L1 positive and negative control cells were processed on the CMx platform and immunofluorescently stained with CK18, CD45 and PD-L1 antibodies plus DAPI nuclear counter-stain as used in patient samples to identify cancer cells and measure PD-L1 protein expression levels. The PD-L1 high expresser cell line (SK-BR3) and PD-L1 negative control cells showed a greater than 20-fold difference in relative fluorescent intensity [Fig.3]. The cutoff for PD-L1 positivity is established based on the negative control cells and fluorescent background.


Clinical Study Cohort

51 NSCLC patients were included in the study and received CTC


PD-L1 blood tests [Fig.4]. Nearly two-thirds (32/51, 63%) of these patients were early stages (0~3) and 15/51 (31%) had confirmed Stage 4 cancer; 4 had unknown staging. For the cohort, gender is even with 24 male and 27 female. Age distribution ranges from 37 to 84, with a median at 64. Tissue IHC were available for 35 of the tested patients.

REFERENCES: Copyright: Interpretation Manual Non-Squamous Non-Small Cell Lung cancer by DAKO, An Agilent Company, for PD-L1 IHC 28-8 pharmaDx ty: <cutoff

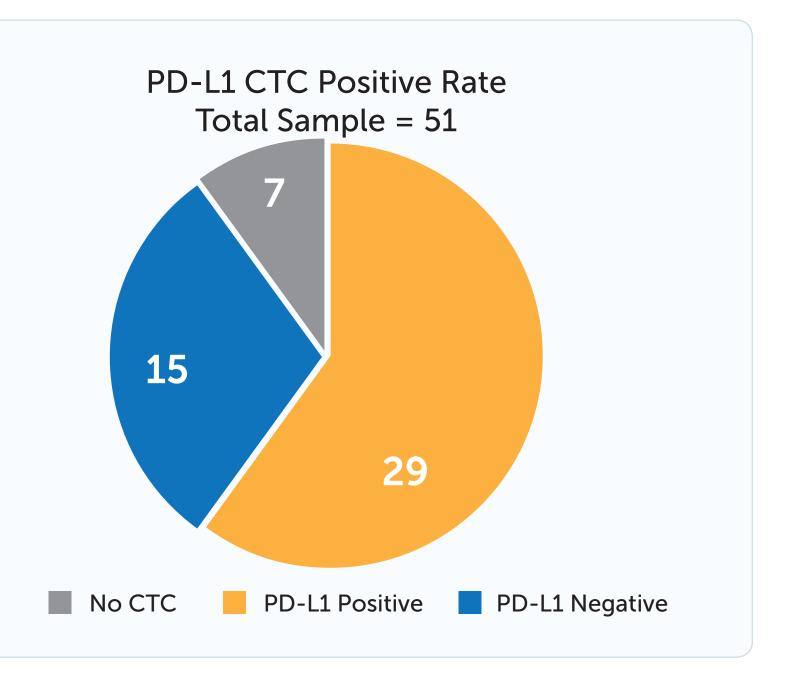
ng is complete circumferential or asma membrane staining¹

[Fig.1] A visual workflow of the CellMax CTC PD-L1 assay being performed on the CMx[™] microfluidic

[Fig.2] CTC showing criteria for positive PD-L1 expression under a microscope

Total Pa	tients = 51	Number	Percent	
	Early Stages	32	63%	
Staging	Late Stage	15	29%	
	Unknown Stage	4	8%	
Gender	Male	24	47%	
	Female	27	53%	
٨٣٥	Range	37-8	84	
Age	Median	64		
PD-L1 Tissue IHC	IHC available	35	69%	
	IHC unavailable	16	31%	

[Fig.4] A summary of the 51 treatment naive NSCLC patients who participated in the CellMax CTC PD-L1 clinical study


[Fig.3] In the CellMax DNA Genetic Cancer Risk Test workflow, genomic DNA is converted to sequenceready libraries, enriched for target regions, sequenced, and variants are called.

RESULTS

CTC Detection Rate and PD-L1 +

- CTCs were detected in 44/51 (86%) of all patients, range 1-47 (median 3)
- CTCs were detected in 87% (28/32) of early and 86% (13/15) of late stage patients
- •66% (29/44) of patients with detectable CTCs were found to have at least one PD-L1 expressing CTC (PD-L1 positive), consistent with PD-L1 clinical trial (66%) on tissue³

	CTC Detection Rate		
	All Patients (Stages 0-4)	Early Stages (Stages 0-3)	Late Stage (Stage 4)
# of Subjects	51	32	15
CTC Detection (≥1 CTC/2mL)	86%	87%	86%
Range	1-47	1-47	1-32
Median	5	5	5

PD-L1 High Expression in Patients

• 9/35 (25%) IHC PD-L1 were high (≥50% PD-L1+ cells), consistent with literature⁴

- These patients are eligible for first-line immunotherapy
 - 8 of these 9 high expressers had detectable CTCs (range 1-24, mean 9, median 8.5)
 - 7 of these 9 (78%) patients were also PD-L1 CTC positive - Multiple PD-L1+ CTCs were detected in 6 out of these 7 patients

PD-L1+ CTCs Among IHC PD-L1 High Expressors							
Patient ID	Age	Gender	Stage	CTC Count	PD-L1+	PD-L1 %	IHC
2	57	Male	1B	3	2	67%	80%
5	69	Female	3	10	7	70%	75%
34	52	Male	4	9	3	33%	70%
8	64	Female	3A	24	20	83%	90%
12	82	Male	4	1	1	100%	60%
13	43	Female	4	15	8	53%	90%
27	67	Male	4	4	3	75%	60%

PD-L1 Positive CTCs Detected in IHC Negative Patients

• 37% (13/35) of the patients tested negative by tissue IHC – these patients were not eligible for immunotherapy •However, all of the 13 IHC PD-L1- patients had detectable CTCs (range 1-12, median 5) and 9 of the them are PD-L1 positive (~50% of the CTC PD-L1 positive patients had multiple PD-L1 positive CTCs) - treatment efficacy follow up on these patients would be very meaningful.

Sensitive Detection of CTCs in Early-Stage NSCLC

•CellMax PD-L1 assay has demonstrated sensitivity of detecting CTCs of all stages in NSCLC, including 87% sensitivity of detecting CTCs in early stages

- Of the 7 (out of 9) IHC PD-L1 High Expressers confirmed by CTCs, 3 are early stages
- Of the 9 (out of 13) IHC PD-L1 negative but CTC PD-L1 positive patients, 4 are early stages

CONCLUSIONS

- Tissue insufficiency and procurement challenges are the primary reasons why ~90% of patients diagnosed with advanced NSCLC are not comprehensively tested per NCCNguidelines in the community setting where most cancer is treated, leading to suboptimal treatment selection.
- In this poster, we present the CellMax liquid biopsy, an accurate blood test that enables the detection of all 6 NCCN-recommended markers (SNV, indels, fusions, CNA, microsatellite instability and CTC PD-L1 expression) for immunotherapy selection. It has the potential to significantly improve adherence to NCCN testing guidelines and enable optimal treatment selection.

PD-L1 Positive Rates in Patients

- IHC results available for 35 patients; 31 (89%) of these patients had detectable CTCs
- 22 (63%) patients were PD-L1+ per IHC
- 23 (66%) patients were PD-L1+ per CTC
- These tissue and blood PD-L1 positive percentages are consistent with what has been reported in clinical trial (66%) for NSCLC patients³

	IHC Results	CTC Results
Number of Patients	35	35
PD-L1 +	22	23
% PD-L1 +	63%	66%
% PD-L1 + IHC in trial	66	%*

SMSEQTM Performance

Detection of 5 NCCN Guidelines Recommended Alterations²

, see: Abstract 3652, Poster Board Number: 10, Session Date and Time: Tuesday Apr 17, 2018 8:00 AM - 12:00 PM Title: Analytical validation of a novel circulating tumor DNA detection platform for targeted and immunotherapy selection

	Detection Range	Sensitivity	Specificity
Single nucleotide variants (SNVs)	0.10% - 0.20%	>80%	>99.999%
	>0.20%	>99%	>99.999%
Small Insertions	0.10% - 0.20%	>70%	>99.999%
and Deletions	>0.20%	>99%	>99.999%
Fusions	>1.0%	>95%	>99.999%
Copy Number Alterations	>4.5 copies	>95%	>99%
MSI	2.0 - 10.0%	>80%	>99%
	>10%	>99%	>99.999%